Joint Transfer and Batch-mode Active Learning
نویسندگان
چکیده
Active learning and transfer learning are two different methodologies that address the common problem of insufficient labels. Transfer learning addresses this problem by using the knowledge gained from a related and already labeled data source, whereas active learning focuses on selecting a small set of informative samples for manual annotation. Recently, there has been much interest in developing frameworks that combine both transfer and active learning methodologies. A few such frameworks reported in literature perform transfer and active learning in two separate stages. In this work, we present an integrated framework that performs transfer and active learning simultaneously by solving a single convex optimization problem. The proposed framework computes the weights of source domain data and selects the samples from the target domain data simultaneously, by minimizing a common objective of reducing distribution difference between the data set consisting of re-weighted source and the queried target domain data and the set of unlabeled target domain data. Comprehensive experiments on real data demonstrate the superior performance of the proposed approach. Proceedings of the 30 th International Conference on Machine Learning, Atlanta, Georgia, USA, 2013. JMLR: W&CP volume 28. Copyright 2013 by the author(s).
منابع مشابه
An Optimization Based Framework for Dynamic Batch Mode Active Learning
Active learning techniques have gained popularity in reducing human effort to annotate data instances for inducing a classifier. When faced with large quantities of unlabeled data, such algorithms automatically select the salient and representative samples for manual annotation. Batch mode active learning schemes have been recently proposed to select a batch of data instances simultaneously, ra...
متن کاملNear-optimal Batch Mode Active Learning and Adaptive Submodular Optimization
Active learning can lead to a dramatic reduction in labeling effort. However, in many practical implementations (such as crowdsourcing, surveys, high-throughput experimental design), it is preferable to query labels for batches of examples to be labelled in parallel. While several heuristics have been proposed for batch-mode active learning, little is known about their theoretical performance. ...
متن کاملDynamic Batch Mode Active Learning via L1 Regularization
We propose a method for dynamic batch mode active learning where the batch size and selection criteria are integrated into a single formulation.
متن کاملDiscriminative Batch Mode Active Learning
Active learning sequentially selects unlabeled instances to label with the goal of reducing the effort needed to learn a good classifier. Most previous studies in active learning have focused on selecting one unlabeled instance to label at one time while retraining in each iteration. Recently a few batch mode active learning approaches have been proposed that select a set of most informative un...
متن کاملA Batch Mode Active Learning for Networked Data
We study a novel problem of batch mode active learning for networked data. In this problem, data instances are connected with links and their labels are correlated with each other, and the goal of batch mode active learning is to exploit the link-based dependencies and node-specific content information to actively select a batch of instances to query the user for learning an accurate model to l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013